

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005061

Course / Subject Name: Process Calculation

w. e. f. Academic Year:	2024-25
Semester:	3 rd
Category of the Course:	PCC

Prerequisite:	Fundamentals of Basic Chemical Engineering Calculations, Unit operations, Unit processes
Rationale:	Process calculation provides the fundamental information to determine the material and energy balances for all types of unit operations and unit processes across the equipment and overall chemical plant. Material and energy balance calculations are of prime importance for design and also for conservation of mass and energy to reduce the losses and cost that enhances overall economy of plant. The unit conversions, material and energy balance are the essential part in the practice of other courses such as mechanical operations, fluid flow, heat Transfer, mass transfer etc. Thus, this course is a core course for chemical engineers and should be learned sincerely by students

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	Calculate material balance for chemical processes and operations.	R, U, A
02	Understand Recycle, Bypass & Purging operation	R, U
03	Calculate energy balance for chemical processes and operations.	R, U, A
04	Estimate amount of fuel and amount of air required for combustion process.	R, U, A
di D		

*Revised Bloom's Taxonomy (RBT)

Teaching and Examination Scheme:

Tead (ching Sche in Hours)	eme	Total Credits L+T+ (PR/2)	Assessment Pattern and Marks		arks	Total	
				Th	eory	Tutorial / I	Practical	Marks
L	Т	PR	C	ESE (E)	PA(M)	PA(I)	ESE (V)	
3	0	0	3	70	30	00	00	100

Program Name: Engineering Level: Diploma Branch: Chemical Engineering Course / Subject Code: DI03005061

Course / Subject Name: Process Calculation

Course Content:

Unit No.	Content		% of
			Weightage
Unit-1 Material Balance Without Chemical Reaction	 1.1 Introduction of Material Balance 1.2 Numericals for Material balance calculation of 1.2.1 Distillation 1.2.2 Absorption 1.2.3 Drying 1.2.4 Extraction 1.2.5 Leaching 1.2.6 Evaporation 1.2.7 Mixing 1.2.8 Crystallization 	12	27
Unit-2 Material Balance with Chemical Reactions	 2.1 Define: Limiting reactant, Excess reactant, conversion, yield and selectivity 2.2 Numericals based on chemical reaction for finding yield, conversion, selectivity and composition. 	08	17
Unit-3 Concept of Recycle and Bypass	 3.1 Define: Recycle operation, Purging operation, Bypass operation 3.2 Description with Block diagram: Recycle operation, Purging operation, Bypass operation 3.3 Basics of: Recycle Ratio, Combined feed ratio, Purge ratio 	03	7
Unit-4 Energy Balance	 4.1 Introduction of energy balance 4.2 Heat capacity 4.2.1 Explain Heat capacity 4.2.2 Derive relation between Cp and Cv for an ideal gas. 4.2.3 Explain Heat Capacity of gases at constant pressure 4.2.4 Explain Heat Capacity of gaseous mixture. 4.3 Explain sensible and latent heat of fusion, sublimation, vaporization 4.3.1 Derive Equation for Sensible heat changes in gases at constant pressure 4.4 Numericals based on heat capacity and Sensible 	12	27

Program Name: Engineering Level: Diploma Branch: Chemical Engineering

Course / Subject Code: DI03005061

Course / Subject Name: Process Calculation

	Total	45	100
	composition of flue gases		
	5.5.1 Numericals related to air Requirement and		
	Air Excess Air		
Compusition	5.5 Air Requirement: Theoretical oxygen Theoretical		
Combustion	5.4.1 Numericals related to calorific values of fuel	10	22
Unit-5 5.4 Explain Calorific values of fuels			
	fuel		
	5.3 Describe Provimate and ultimate analysis of solid		
	5.2 Types of fuels		
	5.1 Introduction of combustion		
	4 5 5 Numericals based on Hess's Law		
	4 5 4 Hess's Law		
	formation and heat of combustion data		
	4.5.3 Calculations for heat of reaction from heat of		
	4.5.2 Standard freat of reaction, Standard freat of		
	4.5.1 Exometinic & Endometinic reaction 4.5.2 Standard Host of reaction. Standard host of		
	4.5 Enthalpy change associated with chemical reaction		
	4.5 Enthelmushence accepted with chemical reaction		

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks (in %)					
R Level	U Level	A Level	N Level	E Level	C Level
18	30	52	-	-	-

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

Program Name: Engineering Level: Diploma Branch: Chemical Engineering Course / Subject Code: DI03005061 Course / Subject Name: Process Calculation

References/Suggested Learning Resources:

(a) Books:

S. No.	Title of Book	Author	Publication with place, year and ISBN	
1	Stoichiometry and Process	K.V. Narayanan, B.	Prentice-Hall of India Pyt I td 2006	
1	Calculations	Lakshmikutty	Trentice Than of India 1 vt. Ekd., 2000.	
2	Stoichiometry	B I Bhatt and S B	McGraw Hill Education; 5th edition (1 July	
	Stolemonieu y	Thakore	2017)	
2	Introduction to Process	K A Caybana	Nirali Prakasan Duna 2015	
5	Calculations Stoichiometry	K. A. Gavilane	Milair Takasali, Fulle, 2015	
	Basic Principles &	David M.		
4	Calculations in Chemical	Himmelblau, James	PHI Learing Pvt. Ltd, 7th edition, 2006.	
	Engineering	B. Riggs		
	Industrial Stoichiometry:	H.C.Lewis,		
5	Chemical Calculations of	W.K.Lewis,	McGraw-Hill, 2nd edition, 1954.	
	Manufacturing Processes	A.H.Radasch,		
6		Shekhar	Dung Vidyorthi Griha Drokashan Dung	
	Process Calculations	pandharipande	411030	
		Samir Mushrif	411050	

(b) Open-source software and website:

- 1 https://nptel.ac.in/courses/103105209
- 2 https://nptel.ac.in/courses/103105110
- 3 https://www.unitoperation.com/
- 4 https://nptel.ac.in/courses/103103165

Suggested Activities for Students:

A suggestive list of activities is given here. This has to match the competency and the COs. Similar projects could be added by the concerned course teacher:

1 Use of MS-Excel for solving numerical.

- 2 Calculate material balance of any process/operation/for a chemical plant for given data.
- 3 Calculate energy balance of any process/operation/for a chemical plant for given data.

4 Calculate air requirement for different fuel & composition of flue gases.

* * * * * * *