

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005031

Course / Subject Name: Process Heat Transfer

w. e. f. Academic Year:	2024-25
Semester:	3 rd
Category of the Course:	PCC

Prerequisite:	Student should have knowledge regarding Unit Operations and Applied Physics			
Rationale:	In almost every chemical plant heat transfer takes place (sometimes it is			
	intentional while sometimes it is unintentional). Study of heat transfer at steady			
	state and unsteady state is therefore important. The knowledge of the basic			
	concepts and principles of heat transfer helps smooth and proper operation of			
	various heat exchangers, evaporators and condensers. Using the concepts of			
	conduction, convection and radiation heat losses through pipes, equipments and			
	storage tanks can be estimated. Hence the course has been designed to develop			
	this competency and its associated cognitive, practical and affective domain			
	learning outcomes			

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	Classify modes of heat transfer, steady state, unsteady state and types of heat	R,U
01	transfer equipment.	
02	Apply laws of heat transfer to various chemical engineering problems	R,U,A
02	Without phase change.	
03	Apply principles of heat transfer with phase change and dimensionless group.	R,U.A
04	Estimate the design parameters for heat transfer equipment.	А

*Revised Bloom's Taxonomy (RBT)

Teaching	and	Examination	Scl	neme:	

	ching Sche in Hours)		Total Credits L+T+ (PR/2)	Assessment Pattern and Marks			Total	
				Th	Theory Tutorial / Practical		Marks	
L	Т	PR	С	ESE (E)	PA(M)	PA(I)	ESE (V)	
3	0	2	4	70	30	20	30	150

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005031

Course / Subject Name: Process Heat Transfer

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
Unit – I Fundamental of Heat	 1.1 Definition and importance of process heat transfer 1.2 Steady state and unsteady state heat transfer 1.3 Basic modes of heat transfer 1.4 General laws of heat transfer 	05	08
Transfer	(a) Conduction (b) Convection (c) Radiation1.5 Thermal conductance and thermal resistance		
Unit – II Heat Transfer by Conduction	 2.1 Concept of heat conduction 2.2 Thermal conductivity of materials – solids, liquids and gases 2.3 Concept of thermal storage capacity and thermal diffusivity 2.4 One dimensional steady state heat conduction through a plane wall, cylinder and sphere 2.5 One dimensional steady state heat conduction through composite plane wall 2.6 One dimensional steady state heat conduction through composite cylinder 2.7 One dimensional steady state heat conduction through composite sphere 2.8 Thermal Insulation 2.9 Derivation of equation for critical radius of insulation 	10	22
Unit – III Heat Transfer by Convection	 2.10 Enhanced heat transfer: concept of fins (extended surface) 3.1 Classification of Convection (a) Free convection (Natural convection) (b) Force convection 3.2 Newton's Law of convective heat transfer 3.3 Individual and Overall heat transfer coefficient 3.4 Significance of dimensionless groups (a) Prandtl No (b) Reynolds No (c) Grashoff No (d) Nusselt No 	04	10
Unit – IV Heat Transfer by Thermal Radiation	 4.1 Fundamental facts of radiation 4.2 Concepts of thermal radiation: (a) Absorptivity (b) reflectivity (c) Transmittivity 4.3 Concept of thermal radiation: (a) Black body (b) White body (c) Gray body (d) Opaque body (e) Transparent body 4.4 Concept of thermal radiation: (a) Emissive power (b) Emissivity(f) Monochromatic wave length 4.5 Laws of radiation (a) Stefan Boltzmann Law (b) Wien's displacement law (c) Kirchhoff's Law 	06	14

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005031

Course / Subject Name: Process Heat Transfer

	4.6 Concept of a black body		
Unit – V	5.1 Introduction to Heat transfer with phase change		
Heat	5.2 Phenomena of Boiling	05	12
Transfer with	5.3 Regimes of Pool boiling		
Phase	5.4 Phenomena of Condensation		
Change	5.5 Drop wise and film wise Condensation		
	6.1 Introduction of heat exchanger		
	6.2 Types of heat exchanger based on flow pattern, function and	10	22
	construction		
	6.3 Double pipe heat exchanger		
	6.4 Shell and tube heat exchanger		
Unit – VI	6.5 Plate type heat exchanger		
Heat	6.6 LMTD for parallel (Co-current) flow derivation of equation		
exchangers	and simple calculations.		
	6.7 LMTD for Counter current flow derivation of equation and		
	simple calculations		
	6.8 LMTD correction factors.		
	6.9 Overall heat transfer co-efficient of heat exchangers		
	6.10 Effect of scale formation		
	7.1 Introduction of evaporation		
	7.2 Characteristics of liquid for evaporation	05	12
Unit – VII	7.3 Evaporator capacity and economy		
Evaporation	7.4 Boiling point elevation and duhring's rule		
	7.5 Types of evaporators		
	(a) natural circulation (b) force circulation		
	Total	45	100

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks (in %)					
R Level U Level A Level N Level E Level C Level					
17	48	35			

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

Program Name: Engineering Level: Diploma Branch: Chemical Engineering Course / Subject Code: DI03005031 Course / Subject Name: Process Heat Transfer

References/Suggested Learning Resources:

(a) Books:

S.No.	Title of Book	Author	Publication with place, year and ISBN
1	Unit Operations of Chemical Engineering	McCabe, Warren L., Julian C. Smith	McGraw Hill Publication, New York 2004(Seventh Edition)
2	Engineering heat transfer	Gupta & Prakash	Nem Chand & Brothers, Roorkee, India,20007 (Eighth Edition)
3	Process heat transfer	D.Q.Kern	Tata McGraw Hill Publication, New Delhi, (Reprint 2008)
4	Unit Operation-II	K.A. Gavhane	Nirali Prakashan, Pune 2009
5	Heat Transfer	J. P. Holman	McGraw Hill Publication, New York 2010 (Tenth Edition)

(b) Open-source software and website:

- 1. https://ndl.iitkgp.ac.in/
- 2. https://www.vlab.co.in/
- 3. https://swayam.gov.in/
- 4. https://onlinecourses.nptel.ac.in
- 5. Literature available in any laboratory manual of Process heat transfer
- 6. MIT Open course lecture available on Internet etc...
- 7. National Digital Library of India

Suggested Practical List:

Sr. No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx. Hrs Require d
1	Determine the thermal conductivity of Metal Rod	2
	Determine the thermal conductivity of non-metal (solids) or (Insulating Material)	2
3	To determine the thermal conductivity of given liquid.	2
4	Determine the thermal conductivity of concentric sphere	2
5	Determine the thermal conductivity of composite wall	2
6	Determine critical radius of insulating material	2
7	Determine the specific heat of Air by forced convection.	2

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005031

Course / Subject Name: Process Heat Transfer

8	To determine convective heat transfer coefficient in natural convection.	2
9	To determine convective heat transfer coefficient in forced convection.	2
10	To Measure the Emissivity of the Test plate Surface.	2
	To determine the value of Stefan Boltzmann constant for radiation heat transfer	2
	To study the phenomenon of boiling heat transfer and to plot the graph of heat flux versus temperature difference. (Critical Heat Flux Apparatus)	2
	To determine overall heat transfer coefficients obtained by operating the double pipe heat exchanger	2
	To determine LMTD of the plate type heat exchanger under parallel and counter Flow arrangement.	2
	To calculate the overall heat transfer coefficient of the shell and tube heat exchanger	2
16	Determine economy of open pan evaporator.	2
17	Study and compare different types of Evaporators.	2

Suggested Activities for Students:

- 1. Assignments
- 2. Technical Quiz/MCQ Test
- 3. Preparation of non-working models of various heat exchange equipments and its importance.
- 4. Preparation of power-point slides, which include videos, animations of various heat exchange equipments

* * * * * * *