

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005011

Course / Subject Name : Basics of Process Instrumentations

w. e. f. Academic Year:	2024-25
Semester:	3 rd
Category of the Course:	ESC

Prerequisite:	Student should have knowledge regarding importance of difference physical properties
Rationale:	The course aims to provide students with a comprehensive understanding of process instrument. Diploma chemical engineer has to ensure smooth and proper operation Use of measuring devices for the measurement of parameters like temperature, pressure, flow, level, viscosity, specific gravity, humidity are necessary for controlling chemical plant for producing materials of desired quality and to maintain plant safety. It covers the operational principles of different measuring devices for variables like temperature, level, pressure, flow and basic concept of process control. Hence the course has been designed to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes		
01	Understand the Role of Instrumentation in Chemical Plants	R, U	
02	Apply Measurement Techniques for Temperature, Pressure, Level and Fluid Properties	А	
03	Demonstrate Knowledge of Calibration and Selection Criteria for Measuring Instruments	А	
04	Differentiate Between Various Process Control Systems	R, U	
05	Understand Industrial Automation Systems and Their Applications	R, U, A	

Revised Bloom's Taxonomy (RBT)* **Teaching and Examination Scheme:

Teaching Scheme (in Hours)			Total Credits L+T+ (PR/2)	Assessment Pattern and Marks			Total	
		2	Tł	neory	Tutorial / H	Practical	Marks	
	Т	РК	C	ESE (E)	PA(M)	PA(I)	ESE (V)	
3	0	0	3	70	30	0	0	100

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005011

Course / Subject Name : Basics of Process Instrumentations

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P-Practical; C-Credit, CA - Continuous Assessment; ESE-End Semester Examination.

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
Unit – I Introduction to Process Instrumentation	 1.1 Importance of instrumentation in chemical plant 1.2 Classification of instruments 1.3 Basic elements of instruments 1.4 Static and dynamic characteristics 1.5 Selection criteria for various measuring devices in chemical industry for: 1.5.1 Temperature 1.5.2 Pressure 1.5.3 Level 1.5.4 Flow 1.6 Calibration of Instrumentation 	7	16
Unit – II Temperature Measurement Devices	 2.1 Introduction to Temperature Measurement Devices 2.2 Different Temperature scale 2.3 Definition of thermometer 2.4 Principle, Construction & Working of : 2.4.1 Mercury in glass thermometer 2.4.2 Bi-metallic thermometer 2.4.3 Pressure Spring thermometer 2.4.4 Resistance thermometer 2.5 Principles of thermoelectricity 2.5.1 See-back effect 2.5.2 Peltier effect and 2.5.3 Thomson effect 2.6 Industrial thermocouple: their principle, construction, working range 2.7 Principle, Construction & Working of Pyrometers: 2.7.1 Radiation Pyrometer 2.7.2 Optical Pyrometer 	7	16
Unit –III Pressure Measurement Devices	 3.1 Introduction to Pressure Measurement Devices 3.2 Principle, construction, and working of various Pressure Gauges 3.2.1 Diaphragm Gauge 3.2.2 Bourdon tube Gauge 3.2.3 Dead weight Gauge 3.2.4 Strain Gauge 	7	16

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005011

Course / Subject Name : Basics of Process Instrumentations

	3.2.5 Capsule Pressure Gauge		
	3.2.6 Absolute Pressure Gauge		
	3.2.7 Differential Pressure Gauge		
	3.2.8 Bellows Pressure Gauge		
	3.2.9 Manometer Pressure Gauge		
	3 2 10 Piezometer Pressure Gauge		
	4.1 Introduction to Level Measurement Devices		
	4.2 Classify and Explain level measuring devices		
	4.2 Classify and Explain level measuring devices		
Unit –IV	4.3 1 Drohe and tane		
Level	4.3.2 Sight glass		
Measurement	4.3.2 Signi glass	6	16
Devices	4.5.5 Floats		
	4.4 Indirect level measuring devices.		
	4.4.1 Air trap box method		
	4.4.2 Diaphragm box method		
	4.4.3 Bellow system		
	5.1 Introduction		
	5.2 Viscosity Measurement		
	5.2.1 Capillary tube		
	5.2.2 Rotating cylinder		
Unit -V	5.2.3 Torsion viscometer		
Fluid Proportion	5.3 Specific gravity Measurement		
Fluid Froperties	5.3.1 Hydrometer	7	16
Devices	5.4 Humidity measurement		
Devices	5.4.1 Hair hygrometer		
	5.5 Flow measurement		
	5.5.1 Target meter,		
	5.5.2 Vortex Shredding meter,		
	5.5.3 Turbine meter		
	6.1 Importance of Process control		
	6.2 Requirement of a good control system		
	6.2 Control system with its Block diagram.		
	6.3 Define: Set point, Error, Disturbances, Manipulated		
Unit-VI	variable Controlled variable		
Basic	6.4 Servo and regulatory control problem	11	20
Process Control	6.5 Feedback and feed forward control system	**	20
	6.6 Open loop and Closed loop system		
	6.7 Various types of Controllers		
	6.7.1 Proportional Controller		
	6.7.2 Proportional Integrative Controller		
		1	1

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005011

Course / Subject Name : Basics of Process Instrumentations

6.10 Advantages and disadvantages of SCADA, DCS, PLC	45	100%
 6.7.5 Proportional Integrative and Derivative Controller 6.8 Definition of SCADA, DCS PLC 6.9 Application area of SCADA, DCS, PLC 		

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks (in %)					
R Level	R LevelU LevelA LevelN LevelE LevelC Level				
30	34	36	-	-	-

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources:

(a) B	ooks:		
Sr. No	Title of Book	Author	Publication with place, year and ISBN
1	Fundamentals of Industrial Instrumentation and Process Control	William C. Dunn	Mc-Graw-Hill (2005)
2	Industrial Instrumentation and Control	S.K. Singh	3 rd edition, McGraw-Hill (2008)
3	Process Control and Instrumentation	R. P. Vyas	Denett & Co. (2015)
4	Industrial Instrumentation	Donald .P. Eckman	John Wiley & Sons Inc, New York (2019)
5	Instrument Engineers' Handbook, Volume 1: Process Measurement and Analysis	Bela G. Liptak (Editor)	5 th edition, CRC Press (2016)

(b) Open source software and website:

- 1. Students can refer to video lectures available on the websites including NPTEL.
- 2. <u>https://www.tec-science.com/thermodynamics/temperature/how-does-a-bimetallic-strip-</u>thermometer-work/ (Bimetallic thermometer animation)
- 3. <u>http://users.telenet.be/instrumentatie/temperature/temperature-scales.html</u> (Temperature scales)

http://syllabus.gtu.ac.in/

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code: DI03005011

Course / Subject Name : Basics of Process Instrumentations

- 4. <u>https://en.wikipedia.org/wiki/Thermometer</u> (Thermometer)
- 5. <u>https://instrumentationtools.com/bimetallic-thermometer/</u> (bimetallic thermometer)
- 6. <u>https://www.thermocoupleinfo.com/#:~:text=A%20Thermocouple%20is%20a%20sensor,temperature%2C%20a%20voltage%20is%20created.</u> (Types of thermocouples)
- 7. <u>https://circuitglobe.com/resistance-thermometer.html</u> (Resistance thermometer)
- 8. <u>https://www.jms-se.com/rtd.php</u> (RTD)
- 9. <u>https://www.instrumentationtoolbox.com/2011/01/sensors-used-in-industrial_25.html</u> (Thermowell)
- 10. <u>https://www.jms-se.com/thermowell.php</u> (Thermowell types)
- 11. <u>https://circuitglobe.com/optical-pyrometer.html</u> (optical pyrometer)

Suggested Activities for Students: Other than the classroom and laboratory learning, following are the suggested student-related co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

Following is the list of proposed student activities like:

- 1. Assignments
- 2. Technical Quiz/MCQ Test
- 3. Presentation on some course topic
- 4. I-net based assignments

* * * * * * *