

Program Name: Engineering Level: Diploma Branch: Chemical Engineering Course / Subject Code : DI02005021 Course / Subject Name : Mechanical Operation

w. e. f. Academic Year:	2024-25
Semester:	2 nd
Category of the Course:	PCC

Prerequisite:	NA
Rationale:	The operations of chemical plants require use of material handling and size reduction equipments, screens, agitator, mixers, centrifuges, cyclones, filters, storage & conveying of solids and other mechanical separation equipments. Therefore, students must have information about the principles, construction, working and application of these equipments so that they can plan for their efficient use in plants. In this course the students would also learn simple calculations to judge the performance of these equipments.

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	Use fundamentals of mechanical operation.	R
02	Apply concept of size reduction, separation, agitation-mixing, Storage and Conveying of Solid.	U, A
03	Operate size reduction equipment, separators, agitators, mixers and conveyors.	R, U
04	Calculate & Derive properties of solid particles, angle of nip, critical speed, power consumption, mixing index, crushing law constants, efficiency, material balance etc.	U, A

*Revised Bloom's Taxonomy (RBT)

Program Name: Engineering Level: Diploma Branch: Chemical Engineering Course / Subject Code : DI02005021

Course / Subject Name : Mechanical Operation

Teaching and Examination Scheme:

Teac (ching Sche in Hours)	eme	Total Credits L+T+ (PR/2)	Assessment Pattern and Marks		Assessment Pattern and Marks		Total
				Th	eory	Tutorial / I	Practical	Marks
L	Т	PR	С	ESE	PA / CA	PA/CA (I)	ESE (V)	
				(E)	(M)			
3	0	2	4	70	30	50	50	200

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
Unit – I Fundamental of Mechanical Operation	 1.1. Fundamentals of Unit Operation and Unit Process 1.2. Examples of Unit Operation and Unit Process 1.3. Define & Calculate Particle density and Bulk density Sphericity Equivalent diameter Specific surface area Volume surface mean diameter Mass mean diameter Number of particles in solid 	4	10
Unit– II Size Reduction	 2.1. Principles of Size reduction and its application 2.2. Factors for selection of size reduction equipment 2.3. Energy and power requirement in comminution 2.4. Laws of size reduction: Rittinger's law Bond's law Kick's law 2.5. Calculate Power required for size reduction using empirical laws and calculation of work Index. 2.6. Principle, construction, working and application of Jaw crusher Gyratory crusher Roll Crusher Ball mill Hammer mill 	10	24

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code : DI02005021

Course / Subject Name : Mechanical Operation

				_
	2.7. Derive equation of angle of nip			
	2.8. Calculation of angle of nip for Roll crusher			
	2.9. Derivation of equation of critical speed for Ball Mill			
	2.10. Calculation of operating speed, critical speed for Ball			
	Mill			
	2.11. Difference between open circuit and close circuit			
	grinding			
	3.1. Basics of Ideal and Actual Screen			
	3.2. Types of Screen Analysis			
	• Cumulative analysis			
	• Differential analysis			
	3.3. Capacity and effectiveness of screen			
	• Derivation of formula for overall effectiveness of			
	screen			
	 Calculation of capacity and effectiveness of screen 			
Unit– III	3.4. Principle, Construction, Working & Application of			
Solid-Solid	• Trommel	-	16	
separation	• grizzlies	/	16	
•	• vibrating screen			
	3.5. Principle, Construction, Working & Application of			
	Hydraulic Jig			
	• Double cone classifier			
	• Electrostatic precipitator			
	• Magnetic separator			
	• Froth flotation cell			
	3.6. Factors affecting selection of equipment for solid			
	separation			
	4.1 Basics of filtration			-
	• Constant Rate filtration			
	Constant Pressure filtration			
Unit– IV	4.2 Filter media and its characteristics			
Solid- fluid	4.3 Filter Aid & its application			
Separation	4.4 Cake Resistance, Filter medium Resistance	10	24	
I	4.5 Principle, construction, working and application of			
	• Filter Press			
	• Rotary Drum Filter			
	• Leaf Filter			
	• Basket Centrifuge			

Program Name: Engineering

Level: Diploma

Branch: Chemical Engineering

Course / Subject Code : DI02005021

Course / Subject Name : Mechanical Operation

8	vessel 5.8 Principle, construction, working and application of			
	5.8 Principle, construction, working and application of			
	5.8 Principle, construction, working and application of			
	5.6 Finiciple, construction, working and appreadon of			
	5.6 Thicipic, construction, working and appreadon of			
	Bibbon blender			
	• Ribbon blender			
	Ribbon blender			
	Ribbon blender			
	Ribbon blender			
	Ribbon blender			
	Ribbon blender			
	• Ribbon blender			
	• Double arm Kneader (Sigma mixer)			
	• Double arm Kneader (Sigma mixer)			
	• Double arm Kneader (Sigma mixer)			
	Bonbury mixer			
	• Banbury mixer			
	• Muller mixer			
	6.1 Angle of repose			
	6.1 Angle of repose			
	6.2 Bulk storage			
	0.2 Durk storage			
Unit VI	6.3 Storage in bins and silos			
	6.4 Types of Converse			
Storage &	6.4 Types of Conveyors 4 10			
Convoying of				
Conveying of	Screw conveyors			
Solid	• Belt conveyors			
Juliu				
	• Bucket elevators			
	• Pneumatic conveying			
	Total	42	100	

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks (in %)					
R Level	R LevelU LevelA LevelN LevelE LevelC Level				
26%	34%	40%	-	-	-

Program Name: Engineering Level: Diploma Branch: Chemical Engineering Course / Subject Code : DI02005021 Course / Subject Name : Mechanical Operation

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources:

(a) Books:

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Introduction to chemical engineering	Badger W. L. and Banchero J. T	McGraw Hill Book Company, New York, 1961,ISBN-10 : 0070016070
2	Unit Operations of Chemical Engineering	McCabe and Smith	McGraw Hill Publications, New Delhi
3	Mechanical Operations	Swain A.K., G.K.Roy	Tata McGraw Hill Publications, New Delhi
4	Unit Operation –I	Gavhane K. A.	Nirali Prakashan, Pune
5	'Chemical Engineering' Vol II,	J.M. Coulson & J.F. Richardson	'Chemical Engineering' Vol II, 6th Ed. Elsevier, 2003
6	Transport Processes and Separation Process Principles'	C.G. Geankopolis.	4th Ed, Prentice Hall India, 2003.
7	Perry's Chemical Engineers' Handbook	Don W. Green, Robert H. Perry	The McGraw-Hill Companies, Eighth Edition, ISBN: 9780071422949

(b) Open source software and website:

- a) <u>https://ndl.iitkgp.ac.in</u>
- b) <u>https://onlinecourses.nptel.ac.in</u>
- c) <u>https://swayam.gov.in/explorer</u>
- d) www.cheresources.com

Suggested Project List:

A suggestive list of projects is given here. This has to match the competency and the COs. Similar projects could be added by the concerned course teacher:

1. Prepare a chart/model of Size reduction equipments along with their principle and applications.

Program Name: Engineering Level: Diploma Branch: Chemical Engineering Course / Subject Code : DI02005021 Course / Subject Name : Mechanical Operation

- 2. Prepare chart/model for various types of impellers used in Industry.
- 3. Interpret results of Cumulative Analysis and Differential Analysis using Microsoft excel.
- 4. Prepare chart for Vortex formation and swirling and Methods for their prevention.
- 5. Draw suitability chart for various factors for selection of various mechanical equipment.
- 6. Prepare 15-20 slides power point presentation showing classification, construction and working of any mechanical equipment.
- 7. Compare Screen Effectiveness by Manual & Mechanical Method using Literature/ experimental data by the use of Microsoft excel.
- 8. Prepare Laboratory set up for Batch Sedimentation.
- 9. Prepare Working model of any mechanical operation equipment.
- 10. Prepare a demonstrative model of any mechanical operation equipment.

Suggested Activities for Students:

Following is the list of proposed student activities like:

- 1. Assignments
- 2. Technical Quiz/MCQ Test
- 3. Presentation on some course topic
- 4. I-net based assignments
- 6. Students are encouraged to register themselves in various MOOCS such as: Swayam, edx, Coursera, Udemy etc to further enhance their learning

* * * * * * *