

Program Name: Engineering Level: Diploma Branch: Electrical Engineering/ Renewable Energy Course / Subject Code : DI01000081 Course / Subject Name : DC Circuit

w. e. f. Academic Year:	2024-25
Semester:	1 st
Category of the Course:	PCC

Prerequisite:	Acquaintance with basic concepts of electricity and electromagnetism					
Rationale:	The "D.C. Circuits" course is fundamental for electrical engineering students,					
	providing essential knowledge of direct current (D.C.) electrical circuits. This					
	course covers the circuit laws, the analysis of series and parallel circuits, forming					
	the basis for understanding more complex electrical systems. Through practical					
	applications and problem-solving exercises, students gain hands-on experience,					
	enhancing their analytical and technical skills. Mastery of D.C. circuits is crucial					
	for advancing to subsequent topics in electrical engineering such as electronic,					
	electrical machines and power systems.					

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	Apply fundamental concepts of electricity, Ohm's law and Joule's law on	٨
01	electrical systems.	A
	Develop the ability to solve electrical D. C. circuits using source transformation	
02	techniques, Kirchhoff's laws, resistor network simplifications, voltage and	А
	current divider rules, and star-delta transformations.	
	Develop the ability to analyze and optimize electrical networks using concepts of	
03	circuit topology, superposition, Thevenin's, Norton's, and Maximum Power	А
	Transfer theorems.	
	Develop a comprehensive understanding of electrostatics, capacitors and their	
04	applications, series-parallel connections, and capacitor charging/discharging	U
	dynamics.	
	Develop a comprehensive understanding of laws and principles of magnetic	
05	fields, magnetic circuits, and electromagnetic induction, inductance, and inductor	U
	configurations.	

*Revised Bloom's Taxonomy (RBT)

Program Name: Engineering Level: Diploma Branch: Electrical Engineering/ Renewable Energy Course / Subject Code : DI01000081 Course / Subject Name : DC Circuit

Teaching and Examination Scheme:

Teac (ching Sche in Hours)	eme)	Total Credits L+T+ (PR/2)	Assessment Pattern and Marks			Total	
				Th	eory	Tutorial / H	Practical	Marks
L	Т	PR	С	ESE	PA / CA	PA/CA (I)	ESE (V)	
				(E)	(M)			
3	0	2	4	70	30	20	30	150

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
1.	 Fundamentals of Electrical Circuits Contents: (1) Concepts of electric charge, electric current, current density, potential, potential difference, emf-voltage (2) Define terms: Resistance, Resistivity, Conductance and Conductivity and factors affecting resistance of a material (3) Conductors, semiconductor and insulator: properties and effect of temperature on resistance of various material (4) Ohm's law: application and limitations (5) Concepts of work, power and energy (6) Joule's law of heating 	08	19 %
2.	 Electrical Circuit Laws and Techniques Contents: (1) Kirchhoff's laws (Kirchhoff's current law and Kirchhoff's voltage law) (2) Series and parallel connections of resistors and equivalent resistance (3) Source transformation techniques; series and parallel connections of battery-cells and equivalent source voltage (4) Voltage and current divider rules (5) Star-Delta transformation 	08	17 %
3.	Electrical Network Theorems	09	17 %

Program Name: Engineering Level: Diploma Branch: Electrical Engineering/ Renewable Energy Course / Subject Code : DI01000081

Course / Subject Name : DC Circuit

	Contents:		
	(1) Concepts of electric circuit topology		
	(2) Superposition theorem		
	(3) Thevenin's theorem		
	(4) Norton's theorem		
	(5) Maximum power transfer theorem		
	Electrostatics and Capacitors		
	Contents:		
	(1) Terms related to electrostatics and Coulomb's law		
	(2) Capacitors: definition, working, factor affecting capacitance		
4.	types and application	08	19 %
	(3) Series - parallel connection of capacitors and equivalent		
	capacitance		
	(4) Charging / discharging of capacitor: State equations of voltage		
	and current, draw curves and define RC time constant		
	Magnetic circuit and Electromagnetic Induction		
	Contents:		
	(1) Magnetic field of conductor and solenoid: right hand rule and		
	end rule		
	(2) Magnetic circuits: overview, terms regarding to magnetic		
F	circuit and comparison with electrical circuits	10	20.04
5.	(3) Faraday's laws of electromagnetic induction: types of induced	12	28 %
	emf, Fleming's right-hand rule, Fleming's left-hand rule and		
	Lenz's law		
	(4) Coefficient of self and mutual inductance		
	(5) Series and parallel connections of inductors		
	(6) Inductor: types, construction and applications		
	Total	45	100

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks (in %)					
R Level U Level A Level N Level E Level C Level					C Level
25 %	35 %	40 %	-	-	-

Program Name: Engineering Level: Diploma Branch: Electrical Engineering/ Renewable Energy Course / Subject Code : DI01000081 Course / Subject Name : DC Circuit

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources: (a) **Books:**

- 1. "Electrical Technology Vol-1", Theraja, B. L., S. Chand & Co. Ltd., 23 edition or latest edition, ISBN-10: 8121924405
- 2. "Elements of Electrical Engineering" by U. A. Patel, Atul Prakashan, 2010 edition or latest
- 3. "Basic Electrical Engineering", Sahdev Ritu, Khanna Publications, 2018 edition, ISBN: 9789386173492
- 4. "Basic Electrical Engineering", Rao, Uma. K., Pearson Education, India, 2012 or latest edition, ISBN: 9788131766026, 9788131766026
- 5. "Basic Electrical Engineering", Ananda Murthy, R. S Pearson Education, India,2011 or latest edition: ISBN-10: 8131754278, ISBN-13 8131754276-978:
- 6. "Basic Electrical Engineering", Mehta V. K. S., Chand & Company (PVT) LTD., 1988 or Latest edition, ISBN: 9788121908719,9788121908719
- "Introduction to Electrical Engineering". Partha Kumar Ganguly, PHI Learning Private Limited, 2014 or latest edition Print Book ISBN: 9788120348097; eBook ISBN: 978935443371
- 8. "Fundamentals of Electric Circuits", Charles K. Alexander & Matthew N. O. Sadiku, Edition: 6th, McGraw-Hill Education Publication, ISBN: 978-0078028229
- 9. "Electrical Engineering Fundamentals", Vincent Del Toro, 2nd Edition, Pearson Education Publication, ISBN: 978-0139477021
- "Electrical Circuit Theory and Technology", John Bird, 5th Edition, Routledge Publication, ISBN: 978-1138673700
- "Electric Circuits", James W. Nilsson & Susan Riedel, 10th Edition, Pearson Publication, ISBN: 978-0133760037

(b) Open-source software and website:

- 1. <u>www.nptel.iitm.ac.in</u>
- 2. <u>www.khanacademy.org</u>
- 3. https://phet.colorado.edu/
- 4. <u>https://ndl.iitkgp.ac.in</u>

Program Name: Engineering Level: Diploma Branch: Electrical Engineering/ Renewable Energy Course / Subject Code : DI01000081 Course / Subject Name : DC Circuit

- 5. <u>www.electrical4u.com</u>
- 6. www.vlab.co.in
- 7. <u>https://www.nde-ed.org/Physics/Magnetism/atommagnetism.xhtml</u>
- 8. <u>https://www.tinkercad.com/dashboard</u>
- 9. https://www.allaboutcircuits.com/
- 10. <u>https://www.electronicshub.org/</u>
- 11. https://openstax.org/

12. https://ocw.mit.edu/courses/8-02t-electricity-and-magnetism-spring-2005/pages/syllabus/

Suggested Course Practical List:

Sr.	Practical Outcome/Title of experiment	CO	CO2	CO3	CO4	CO5
No.	r r	1				
1	Demonstrate various types of resistors and					
	measure resistance					
2	Verify Ohm's law in the given electric					
	Circuit					
3	Verify Kirchhoff's current law in the given					
	electrical circuit					
4	Measure voltage, current and resistance in					
	the given DC circuit					
5	Verify Kirchhoff's voltage law in the given					
	electrical circuit					
6	Determine equivalent resistance for series					
	connection of resistors					
7	Determine equivalent resistance for parallel					
	connection resistors					
8	Verify Superposition theorem and determine					
	the current and voltage in each branch of the					
	given circuit					
9	Verify Thevenin's theorem and determine					
	the current and voltage in each branch of the					
	given circuit					

Program Name: Engineering

Level: Diploma

Branch: Electrical Engineering/ Renewable Energy

Course / Subject Code : DI01000081

Course / Subject Name : DC Circuit

10	Verify Norton's theorem and determine the			
	current and voltage in each branch of the			
	given circuit			
11	Verify Maximum Power Transfer Theorem			
	and determine value of load resistance for			
	maximum power transfer in the given			
	electrical circuit			
12	Determine the equivalent capacitance of			
	series and parallel connection of capacitor			
13	Test the different types of capacitors			
14	Measure charging and discharging time of			
	capacitor in the given circuit and verify the			
	same with RC time constant			
15	Test different types of inductors			
16	Demonstrate Faraday's law of	 		
	electromagnetic induction			
17	Measure inductance of a given inductor or a			
	choke coil using LCR meter			

List of Laboratory/Learning Resources Required:

Sr.	Equipment Name with Broad Specifications
No.	
01	Variable DC source, Dual channel (0-30 V, 0-2 A, 0-5 A, digital display)
02	DC Ammeter (0-2 A, 0-5 A, Analog or Digital)
03	DC Voltmeter (0-30 V or 0-50-100 V, Analog or Digital)
04	Digital Multimeter (3-1/2 display, max reading 1999m hand held)
05	Stop Watch
06	Rheostat (0-300 Ohm, 0-2 A, linear, slider type)
07	Bread board (2 Power, 2 ground rails, 2 circuit areas, contact points > 200, Volt > 15
	V, Current > 1 A)

Program Name: Engineering

Level: Diploma

Branch: Electrical Engineering/ Renewable Energy

Course / Subject Code : DI01000081

Course / Subject Name : DC Circuit

08	Resistors of various range and types
09	Capacitors of various range and types
10	Inductors of various range and types
11	Variable POT: Single turn (rotation up to 270 degrees, multi turn, Dual gang POT)
12	LCR meter – Diplay-3.5 Digits, Count-1999, Inductance range-1mh-10 H or suitable,
	Inductance accuracy-+/- 5%, Capacitor range- 1nF – 1000 micro F, Capacitance
	accuracy-+/- 5 %, Resistance accuracy- +/- 1 %, Auxiliary-Test leads, batteries and
	manual.
13	Batteries (1.5 V to 12 V, cylindrical, rectangular, chargeable / non-rechargeable, Size
	A, AA, C, D, E etc.)

Suggested Project List:

- 1. Model to demonstrate Electromagnetism: Refer the you-tube link <u>https://www.youtube.com/watch?v=vwIdZjjd8fo</u>
- Model to demonstrate mutually induced emf: Build a simple electric model to demonstrate mutually induced emf. Refer the you-tube link https://www.youtube.com/watch?v=tcC0bS04i3s
- 3. Electric Bell. Refer the you-tube link <u>https://youtu.be/N3PKtyGBHSo?si=bMo945tDpP27g6XC</u>
- 4. Build a small heater (room, water etc.)
- 5. Make demonstrable models of various types of resistors, capacitors, inductors, their types, application based on types and ratings etc.
- 6. Flashing neon bulb using RC timer circuit. (Or any application using RC timer circuit).
- 7. Battery Life Testing: Design a circuit to measure the discharge curve of different types of batteries (e.g., AA, AAA) under constant load.
- 8. Disposal of old capacitors and batteries Compile a report on handling recycling and disposal of old capacitors and batteries
- 9. Voltage Divider Network: Design and build a voltage divider circuit and test its performance in providing different voltage levels from a single power source.
- 10. Battery Charger: Develop a simple battery charger circuit for Ni-Cd or Li-ion batteries and include features for charging status indication.

Program Name: Engineering Level: Diploma Branch: Electrical Engineering/ Renewable Energy Course / Subject Code : DI01000081 Course / Subject Name : DC Circuit

Suggested Activities for Students:

Beyond classroom and laboratory learning, the following co-curricular activities are recommended to enhance the achievement levels of various outcomes in this course. Students are encouraged to undertake these activities either individually or in groups and prepare comprehensive reports of approximately five pages for each activity. Additionally, students should gather and document physical evidences for their portfolios, which could be beneficial during placement interviews:

a) Project Model / Seminar Presentations: Demonstrate project models or deliver seminars on various topics covered in the course content.

b) Numerical Problem Solving: Work on numerical problems provided in tutorial problems.

Assignments /Tutorial problems should be distributed unit-wise, and students should seek progressive assessment from the concerned course facilitators throughout the term. At the end of the term, the entire body of work should be submitted to the respective course facilitators for evaluation.

These activities will not only reinforce the theoretical understanding but also provide practical exposure and critical thinking opportunities essential for professional growth.

w.e.f. 2024-25