GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Electric Traction & Control

(Course Code: 4350907)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	5 th Semester

1. RATIONALE

The country is leading towards the railway electrification and also moving towards metro, monorail system. The diploma student is required to know about the electric traction scheme and its latest trends. This subject is offered as one of the elective, highlighting the current and future trends in traction systems, auxiliary equipment, electric locomotives, control of traction motors and future-trends. The Diploma pass student with this elective will be able to maintain the traction systems, auxiliary equipment, electric locomotives and traction motors.

2. COURSE OUTCOMES

The theory should be taught and practical should be undertaken in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domains to demonstrate the following course outcomes:

I :-Distinguish different traction systems and Differentiate services of traction system based on speed time curve.

II:-.Control different types of traction motors.

III:-Explain the distribution system of a traction system and specific energy consumption.

IV:-Use various traction system auxiliaries

V : - Latest trends in traction systems.

3.TEACHING AND EXAMINATION SCHEME

Teaching scheme		Total	Total	Examination Scheme					
	(in hours)		contact	credits	Theory	/ marks	Practica	al marks	Total
L	Т	Р	hrs/week	L+T+(P/2)	СА	ESE	СА	ESE	marks
3	0	2	5	4	70	30	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to betaken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends:L-Lecture; **T** – Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** – Credit, **CA** - Continuous Assessment; **ESE** - End Semester Examination.

4.SUGGESTED LIST OF EXERCISES/PRACTICALS

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills **(Outcomes in cognitive, psychomotor and affective domain)** so that students are able to acquire the competencies.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr.	Unit No	Practical Exercises	Approx
No.		(Major outcomes in Psychomotor Domain)	Hours.
			required
1	I	Investigate the various traction systems in Indian railways.	02
2	I	Solve Numerical on speed time curves	02
3	II	Justify the use of D. C. Series motor as traction motor	02
4	II	Calculate energy saving by series parallel control of D. C. Motor (for two	02
		and four motors).	
5	II	Investigate the energy recovered using regenerative braking	02
6	III	Study of major equipments in AC traction substations.	02
7	III	Solve numerical on specific energy consumption.	02
8	IV	Study of layout of D. C. locomotive and diesel locomotive.	02
9	IV	Study of power diagram of A.C. locomotive and its equipment.	02
10	IV	Draw sketch of the Overhead current collecting equipment.	02
11	IV	Describe the train lighting system	02
12	V	Investigate various latest trends in electric traction systems	02
13	V	Understand the working of high speed train	02
14	V	Prepare A report on Traction visit / Metro visit	02
		TOTAL HOURS	26

Note

i. More Practical Exercises can be designed and offered by the respective course teacher to develop the present industry/traction system relevant skills/outcomes to match the COs. The above table is only a suggestive list.
ii. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.

Sr.no.	Sample Performance Indicators for the PrOs	Weightage in %
1.	Diagram / sketches / tables	30
2.	Conceptual clarity	20
3.	Team work & ethical values	20
4.	Experimental setup, Procedure and conduction by following	30
	safety practices.	

5.UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of Revised Bloom's taxonomy that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency

Unit	UNIT OUTCOMES (UOs)	Topics and Sub-topics		
UNIT-I	1a. History of Railway. Explain types of traction	1.1 Steam, diesel, diesel-electric, Battery		
TRACTION	systems and their significance.	and electric traction systems		
SYSTEM AND	1b. Explain the general arrangement of	1.2 General arrangement of D.C.,A.C		
SPEED TIME	different types of Electric traction systems and	single-phase, 3phase ,Composite		
CURVE	their significance.	systems		
	1c. Select a traction system for a given	1.3 Choice of traction system - Diesel-		
	application.	Electric or Electric.		
	1d.Draw the speed time curve related to	1.4 Analysis of speed time curves for main		
	different traction system.	line. suburban and urban services		
	1e. Solve numerical based on speed time curve.	1.5 Simplified speed time curves.		
		1.6 Relationship between principal		
		quantities in speed time curves		
		1 7 Numerical on speed time curve		
		1.7 Numerical on speed time curve		
UNIT-II	2a Statethedesirablefeaturesoftractionmotors	2 1Featuresoftractionmotors		
TRACTION	2h Explain Significance of D C	2.2 Significance of D C series motoras		
MOTORS AND ITS	seriesmotoroverD C Shuntmotor	tractionmotor		
CONTROL	2c Explainworkingofyarious A C motorsas	2 3 A C Tractionmotors-singlenhase Three		
CONTROL	tractionmotors	phase LinearInductionMotor		
		2 A Comparison		
	2d Compare different traction	2.4 Comparison		
	zu. compare unterent traction	2.5 Series parallelcontrol		
	A polie dtetre stier meters	2.5 Series-parallelcontrol		
	Applied to traction motors.	2.6 Open circuit, Shunt		
	2T.Explaindifferenttypesofelectricbrakingsystem	andbridgetransition		
		2.7Puise width		
		Modulationcontrolofinductionmotors		
		2.8 Typesofelectricbraking		
		System.		
	22 Explain the distribution & feeder	2 1 Distribution systems portaining to		
	suctom partaining to traction	5.1Distribution systemsperialiting to		
	2h. Classify traction substations	2 2 Traction sub		
	30. Classify induition substations	3.2 I raction sub-		
	3c. Describe different methods of	2 2 Mathe deffered in the twe stien such		
SPECIFIC EIVERGY	reeding the traction sub-station	3.3Wethodoffeedingthetractionsub-		
CONSUMPTION	30. Tractive effort	station		
CALCULATION	3e. Calculate specific energy consumption.	3.4 Requirement of tractive effort		
	3f. State the factors affecting Specific energy	3.5 derivation of expression for tractive		
	consumption	effort		
		3.5 Calculation of train resistance and		
		derivation of general equation		
		3.6 Energy output from driving axle		
		3.7 Numerical on specific energy		
		consumption		
UNIT-IV	4a. Classify electric locomotive	4.1 Important features of electric		
		locomotives		

Electric	4b. Describe the function of auxiliaries in	4.2 Different types of locomotives
Locomotives and	traction system	4.3 Current collecting equipment 4.4
Auxiliary	4c. Describe the different current collecting	Coach wiring and lighting devices
Equipment	methods in locomotives	
	4d. Explain different control and auxiliary	4.5 Power conversion and transmission
	equipment used in the locomotive	systems
	4e. Describe the Power conversion and	
	transmission systems	4.6 Control and auxiliary equipment
	4f. Explain Coach wiring and lighting devices	
UNIT V	5a. Explain the present scenario of INDIAN	5.1 future plans for traction and present
MODERN TRENDS	Railways- High speedtraction, bullet train, hyper	day facilities in INDIAN RAILWAYS
IN ELECTRIC	loop , Metro	5.2 metro rail electrical system
TRACTION	5b.Detail the latest trends in traction.6c.	5.2.1 substation
SYSTEM	magnetic levitation	5.2.2 traction system and operational
	5d.linear Electric motor (LEM)	control centre (OCC)
		5.2.3 Earthing system and reliability
		measures
		5.3 magnetic levitation
		5.4 linear induction motor (LIM)
		5.5 high speed train on magnetic levitation
		5.6 variable frequency operation of 3
		phase induction motor
		5.7 electro magnet suspension c and
		electro dynamic suspension

6.SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
I	Traction System And Speed Time Curve	08	04	02	04	10	
Ш	Traction Motors And Its Control	14	05	07	10	22	
III	Feeding, Distribution System And Specific Energy	08	02	04	04	10	
	Consumption Calculation						
IV	Electric Locomotives And Auxiliary Equipment	08	06	08	06	20	
V	Modern Trends In Electric Traction System	04	04	04	00	08	
	TOTAL	42	21	25	24	70	

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy) Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7.SUGGESTED LIST OF STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student related co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course. Students should perform following activities in group (or individual) and prepare reports of about 10 pages for each activity. They should also collect/record physical evidence for their (student's) portfolio which may be useful for their placement interviews.

- a) Present seminar on various topic form course content
- b) Prepare a report after visiting electric traction substation / metro rail system

- c) Prepare report on the following D.C. locomotive ,A.C/DC locomotive and diesel electric locomotive
- d) Solve numerical problem regarding course contents
- e) Prepare a report on current collector system with complete arrangement of pantograph its location and electric wiring system with locomotive
- f) Seminar on latest electric traction in world.

8.SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- a) Massive open online courses (MOOCs) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking mini-projects
- c) Arrange visit to nearby locomotive workshop / loco shed
- d) Arrange nearby visit to metro rail system
- e) Arrange nearby visit to electric locomotive loco shed
- f) Co-relating the importance of content of this course with other courses and practical applications
- g) Arrange nearby visit to traction substation
- h) Show animation/video related to course content
- i) Have group discussion on various topic on course content and get updated with latest trends in traction system

9.SUGGESTED MICRO-PROJECTS:

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3). However, **in the fifth and sixth semesters**, the number of students in the group should not exceed three. The micro-project could be industry application based, internet-based, workshop based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs. A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher

- A) Prepare the model of traction substation
- B) Working model of hybrid locomotive
- C) Prepare Model for catenary system
- D) Making drawing sheet of control system and type of switch
- E) Working model of single battery system
- F) Collect the sample overhead cable, supports and line insulator
- G) Model for conductor rail system and finding the transformer rating based on loading
- H) Prepare chart of various upgrade locomotive and traction system
- I) Making drawing sheet of representing tractive effort

10.SUGGESTED LEARNING RESOURCES

Sr.no.	Title of books	Author	Publication
1.	ELECTRIC TRACTION	J UPADHYAY,S.N.MAHENDRA	ALLIED PUBLISHERS LTD.
2.	ELECTRIC TRACTION	A.T.DOVER	MAC MILLAN, DHANPAT
			RAI AND SONS, NEW
			DELHI

3.	Power Electronics and Electric	Gonzalo Abad	John Wiley & Sons.
	Drives for Traction	Top of Form	
	Applications	Bottom of Form	
4.	Metro Rail in India for Urban	M. M. Agarwal, Sudhir Chandra,	Prabha& Co.
	Mobility	<u>K. K. Miglani</u>	
5.	Electric Traction - Motive	Andreas Steimel	OldenbourgIndustrieverlag
	Power and Energy Supply	Top of Form	
		Bottom of Form	
6.	Modern Electric Traction	Tarlok Singh	S.k. Kataria
7.	Utilization of Electrical Energy	J.B.GUPTA, <u>Rajeev Manglik</u> ,	S.K. Kataria& Sons
	and Traction	<u>RohitManglik</u>	
8.	ELECTRIC TRACTION HAND	R.B.BROOKS	SIR ISAAC PITMAN AND
	ВООК		SON LTD. LONDON
9.	MODERN ELECTRIC TRACTION	H.PARTAB	DHANPAT RAI AND SONS,
			NEW DELHI

List of Major Equipment/ Instrument with Broad Specifications

- i. Models of different traction systems and equipment
- ii. Working Models of different traction motor

11.SOFTWARE/LEARNING WEBSITES WEBSITES

- a. www.scrailway.gov.in
- b. <u>www.wr.railnet.gov.in/bctweb/ELECTRICAL.htm</u>
- c. www.irieen.com(IndianRailwaysInstituteofElectricalEngineering,NasikRoad)
- d. www.vlab.co.in
- e. <u>www.electricaltechnology.org/</u>
- f. <u>www.electrical4u.com</u>
- g. www.lectures.gtu.ac.in
- h. <u>https://circuitglobe.com/electrical-earthing.html</u>

12.PO-COMPETENCY – CO MAPPING:

SEMESTER V	ELECTRICAL TRACTION AND CONTROL COURSE CODE (4350907)						
				POS			
Competency	PO 1	PO 2	PO 3	PO4	PO5	PO 6	PO 7
&	Basic &	Problem	Design/	Engineering	Engineering	Project	Life-
Course Outcomes	Discipline	Analysis	develop	Tools,	practices for	Management	long
	specific		ment of	Experimentation	society,		learning
	knowledg		solution	&Testing	sustainability		
	&						
					environment		

Competency	Operate and maintain various types of Electrical Traction System						
Course Outcomes	3	2	2	-	3	-	2
CO1							
Distinguish different							
traction systems							
andDifferentiate							
services of traction							
system based on							
speed time curve							
CO2	3	3	3	-	-	-	2
Control different							
types of traction							
motors							
CO3	3	2	2	-	2	-	2
Explain the							
distribution system							
of a traction system							
and specific energy							
consumption							
CO4	3	-	-	-	-	2	2
Use various traction							
system auxiliaries							
CO5	3	2	-	-	3	-	2
Latest trends in							
traction systems.							

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

13.COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU RESOURCE PERSON

SR.NO.	NAME	INSTITUTE	CONTACT NO.	EMAIL
1.	Smt. Devangi J Jain	B&B Institute of Technology	9724308429	<u>devangijjain@gmail.com</u>
		v.v.nagar		
2.	M.K.CHAWDA	Tolani F G Polytechnic Adipur	8460583331	Manishchawda1992@gmail.com