GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021(COGC-2021) Semester-IV

Course Title: Safety and Pollution Control in Chemical Industry (Code: 4340504)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	4 th Semester

1. RATIONALE:

In the race of becoming an economic powerhouse without compromising safety and environmental degradation is utmost priority for all stakeholders. Better Industrial safety and pollution control in chemical industries leads to improve in reputation, work culture and safe and smooth run of plant without breakdown which leads to economic growth. Chemical engineer plays an important role in industrial safety and pollution control. This course deals with basic concepts and methods for industrial safety and pollution control.

2. COMPETENCY:

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use principles of safety & pollution control to operate plant safely, and control pollution within permissible limits in chemical industries.

3. COURSE OUTCOMES(COs):

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned competency:

- 1. Understand basic concepts of Environment, Health & Safety.
- 2. Apply hazard control method in chemical industries.
- 3. Discuss hazard identification method & Risk assessment method.
- 4. Apply pollution control methods in chemical industries.

4. TEACHING AND EXAMINATION SCHEME:

Teaching Scheme		Total Credits	Examination Scheme						
	(In Ho	urs)	(L+T+P)	P) Theory Marks Practica		Theory Marks Practical Marks		/larks	Total Marks
L	Т	Р	С	CA	ESE	CA	ESE		
3	0	2	4	30*	70	25	25	150	

(*):Out of 30marks under the theory CA,10 marks are for assessment of the micro-project to facilitate the integration of COs, and the remaining 20 marks are the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the

attainment of the COs.

Legends: L-Lecture; **T** – Tutorial/Teacher Guided Theory Practice; **P** - Practical; **C** – Credit, **CA** - Continuous Assessment; **ESE**-End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES:

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' (in approx. Hrs column) are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Unit No.	Approx. Hrs Required
1	Prepare a report of "Learning From Incident" for a given Incident	I	2
2	Demonstrate handover of equipment(any one of heat exchanger/Pump/Vessel etc.) for maintenance by applying lock out tag out (LOTO)	II	2
3	Prepare Work permit for maintenance of any equipment (heat exchanger/Pump/Vessel etc.)	II	2
4	Demonstrate working of different fire extinguishers according to classes of fire	П	2
5	Apply HAZOP method for a given chemical plant or any job/task		2
6	Remove suspended Impurities from air using cyclone system	IV	2
7	Determine pH value of given sample of water.	V	2
8	Determine the chloride content in given sample.	V	2
9	Determine Total solid in given sample.	V	2
10	Determine dissolved oxygen of given sample.	V	2
11	Determine biological oxygen demand of given sample.	V	4
12	Determine chemical oxygen demand of given sample.	V	2
13	Measure dosage of alum for waste water treatment.	V	2
14	prepare chart of solid waste management method suitable for solid waste	VI	2
	Total		30

Note

- I. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- II. The following are some sample 'Process' and '#Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Performance Indicators for the PrOs	Weightage in %
1	Handling of apparatus for precise measurements	10
2	Record observations correctly	20
3	Practice and adapt good and safe measuring techniques	10
4	Calculations, Interpretation of results and their conclusion.	20
5	Prepare report of practical in prescribed format	10
6	Solve assignment questions.	20
7	Viva-voce	10
	Total	100

Sr. No.	Performance Indicators for the (Study)PrOs	Weightage in %
1	Understand importance of Practical	20
2	Prepare report of practical in prescribed format	30
3	Solve assignment questions.	30
4	Viva-voce	20
	Total	100

6. MAJOR EQUIPMENT/INSTRUMENTS AND SOFTWARE REQUIRED:

These major equipment/instruments and Software required to develop PrOs are given below with broad specifications to facilitate procurement of them by the administrators/management to the institutes. This will ensure the conduction of practice in all institutions across the state in a proper way so that the desired skills are developed in students.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	pH meter: pH range-2.00 to +16.00, Resolution: 0.01, Accuracy: ±0.02, mV range: ±1999 mV, Temperature range: -10 to +105°C	7
3	Incubator (BOD set up): Chamber volume:285.0 litre, range :+50C to 600C, controller accuracy:+/-0.50C set value of temp., PID Control: microprocessor based PID controller	11
4	Cyclone separator: 20" diameter cyclone dust collector,3" carbon steel straight wall and a 38" carbon steel cone tapering to an 8" x 8" discharge, 3" inlet and 3" exhaust. Splits in the middle for easy clean out	6
5	Weighing machine: Digital min. measurement 1 microgram	6, 8,9, 10, 11, 12, 13
6	Oven: Size: 24" x 24" x 24", Shelves: 2 Adjustable Wire mash type Heating Element: Ni-chrome wire, 1.5 kw, Temp. Controller: PID type, Front membrane keys LED Display, 250 °C, Max. Temp., Auto Tune facility, Power supply : Single phase, AC 230 volts from mains	9
7	Muffle furnace: Structure: Rectangular horizontal, Outer body: M.S powder coated, Complete with control gear bulb, Max. temperature Range: 900°C to1200°C, Digital display control indicator Muffle size: 9"*4"*4"	9

0	Fire Extinguisher: (1). DCP stored pressure type 6 kg, (2) Carbon	Λ
0	dioxide Extinguisher 4.5 kg.	4

7. AFFECTIVE DOMAIN OUTCOMES:

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices
- c) Observe safety measures
- d) Good house keeping
- e) Time management
- f) Practice environmentally friendly methods and processes.

The ADOs are best developed through laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY:

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the Cos and competency. If required, more such higher-level UOs could be included by the course teacher to focus on the attainment of Cos and competency.

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Describe importance of	1.1 Importance of Industrial Safety and
Introduction to	safety in Industry	pollution control
Industrial	1b. Discuss Significant Industrial	1.2 Significant Industrial Disaster: Bhopal
Safety and	Disasters	gas tragedy
pollution	1c. Define Safety	1.3 terminologies:
control		a. Safety
		b. Pollution
		c. Exposure
		d. Severity
		e. Probability
		f. Hazard
		g. Risk
		h. Accident
		i. Unsafe Act and Unsafe Condition
		j. Nearmiss
		k. Aspect and Impact

	1d. List out various Indian and	1.4 Overview of Indian and International			
	International Safety, health and	Safety, health and Environmental			
	Environmental laws, and	Standards and Laws			
	standards	Air and Water quality specifications by			
		GPCB or CPCB)			
Unit – II	2a. Describe chemical Industrial	2.1 Describe Chemical industrial Hazards			
Hazards and	hazards	a. Chemical hazard			
Their Control		b. Electrical hazard			
		c. Mechanical hazard			
		d. Biological hazard			
		e. Radiation hazard			
	2b. Classify Chemical Hazard	2.2 Classification of Chemical hazard			
	2c. List out various Occupational	2.3 Occupational diseases and their causes			
	diseases and their causes				
	2d. Explain Hazard control	2.4 Hazard control hierarchy			
	methods				
		a. Elimination			
		b. Substitution			
		c. Engineering Controls			
		Ventilation and lighting, Enclosure,			
		Isolation			
		d. Administrative Controls			
		Work permit system, Lock Out Tag			
		Out(LOTO) Management, Drills and			
		table top exercises, Good			
		Housekeeping- 5S, Color codes and			
		symbols for safety in chemical			
		plants			
		e. Personal Protective Equipments			
		(PPEs)			
	2e. Explain Fire Hazard and its	2.5 Fire hazards & their causes			
	control methods	2.6 Fire Triangle and Fire Extinguishment			
		method			
		2.7 Classes of fire and respective suitable			
		firefighting equipment			
		2.8 Fire extinguisher operation: PASS			
	2f. Discuss MSDS	2.9 MSDS			
Unit – III	3a. Explain Hazard Identification	3.1 List out various Hazard Identification			
Hazard	Methods	methods :			
Identification		3.2 Explain Hazard Identification Method:			
and Risk		Hazard Operability Study (HAZOP)			
Assessment	3b. Explain Risk Assessment	3.3 List out various Risk Assessment			
	Methods	Methods			
		3.4 Explain Risk Assessment method: FTA			
		and FTA			

Unit – IV	4a. Define Air Pollution.	4.1 Air Pollution Pollutants, and its sources		
Air Pollution	Pollutants and its sources			
Control	4b. Describe Particulate control equipments	4.2 Particulate control equipments Gravity Settling Chamber, Cyclone separator, Fabric Filter, Wet Scrubber and Electrostatic Precipitator		
	4c. Describe Thermal incineration	4.3 Thermal incineration, stack		
	4d. Apply control methods for gaseous air pollution due to Sulfur dioxide emission	 4.4 Methods for control of Sulfur dioxide emission a. Extraction of sulfur from fuels: Hydrodesulphurization of coal b. Desulphurization of flue gases by Wet processes (wet scrubbing methods) 		
	4e. Apply control methods for gaseous air pollution from Nitrogen Oxides.	4.5 Methods for control of Nitrogen Oxidesa. Modification of operating conditionb. Modification of design condition		
Unit – V Water Pollution	5a. Define Water Pollution. 5b. List out different Water Pollutants and its sources	5.1 Water Pollution Pollutants, and its sources		
Control	5c. Explain characteristics of water	5.2 characteristics of water DO, BOD,COD, VM, Suspended Matter (turbidity), TDS, pH		
	5d. Describe removal of pollutants by applying Waste water treatment methods	 5.3 Waste water treatment method a. Primary treatment i. Pretreatment ii. Sedimentation iii. Floatation b. Secondary treatment i. Aerobic process ii. Anaerobic process: Activated sludge process iii. trickling filter 		
	5e. Describe removal of pollutants by applying various treatment methods on suspended solids	 5.4 Suspended solids treatment methods a. Micro straining b. Coagulation c. Filtration 		
	5f. List treatment methods for dissolved solids	5.5 Dissolved solids and treatmentmethodsa. Ion exchangeb. Reverse Osmosis		

	5g. Explain oxidation and disinfection	5.6 Chemical oxidation/Disinfection	
	5h. Explain Sludge processing	5.7 Thickening, Digestion, Conditioning, Dewatering, Oxidation and ultimate sludge removal	
	5i. Describe Effluent treatment plant drawing schematic block diagram	5.8 Effluent treatment plant- ETP	
Unit – IV Solid Waste	4a. Define solid waste 4b. Classify solid waste	4.1 solid waste classification	
Management	4c. Explain methods of solid Waste Disposal	 4.2 Methods of solid waste disposal a. Open Dumping b. Sanitary Land filling c. Incineration d. Compositing e. Reuse, recovery and recycling 4.3 Public Health aspects 	

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

	Unit Title	Teaching Hours	Distribution of Theory Marks			
Unit			R	U	Α	Total
			Level	Level	Level	Marks
I	Introduction to Industrial Safety and pollution control	4	2	5	0	7
II	hazards and Their Control	12	2	8	10	20
111	Hazard Identification and Risk Assessment	4	2	2	3	7
IV	Air Pollution Control	6	2	2	5	9
V	Water Pollution Control	12	2	8	10	20
VI	Solid Waste Management	4	2	2	3	7
	Total	42	12	27	31	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, the following are the suggested student-

related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Student should perform the following activities in group and prepare small reports of about 5 pages for each activity. They should also collect/record physical evidence such as photographs/videos of the activities for their (student's) portfolio which will be useful for their placement interviews:

- a) Make a survey on Accident/incidents happened in your city with the help of newspaper/TV or any social media.
- b) Visit any public place and nearby industry, prepare a report on safety features incorporated at both place.
- c) Make a survey on awareness of people regarding firefighting and emergency response at your society/village. Conduct an awareness drive and again survey the same.
- d) Make a survey of air quality of your city with the help of internet.
- e) Visit nearby fire station and make a report of same.
- f) Make a report on Sewage water treatment plant located in your city.
- g) Make a survey of solid waste management in your city/village.
- h) Make a report on Environment Impact assessment of any project, Available on internet
- Prepare a report on Nature based solutions for climate change in India, Gujarat and your district/city/village. Efforts needed for their improvements. At last engage yourself for NBS and acknowledge same in the report with the help of photos.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects/activities.
- c) Different types of teaching methods i.e. video demonstration, activity based learning, case study, m-learning need to be employed by teachers to develop the outcomes.
- d) Some *of the topics/sub-topics* which is relatively simpler or descriptive is to be given to the students for *self-learning* but to be assessed using different assessment methods.
- e) Teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students to address issues on environment and sustainability with reference to using the knowledge of this course
- g) OERs, V-lab, and O-labs may be used to teach for the teaching of different concepts.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her at the beginning of the semester. In the first four semesters, the micro-project is group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application-based, internet-based, workshop-based,

laboratory-based, or field-based. Each micro-project should encompass two or more COs which are the integration of PrOs, UOs, and ADOs. Each student will have to maintain adapted work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro-project should be about **14**-

16 *(fourteen to sixteen) student engagement hours* during the course. The student sought to submit micro-project by the end of the semester (so that they develop industry-oriented COs.

A suggestive list of micro-projects is given here. This should relate highly to the competency of the course and the COs. Similar micro-projects could be added by the concerned course teacher.

- a) Prepare a Chart or Presentation of International and Indian safety health and environmental laws.
- b) Prepare a chart or presentation of various hazard symbols involved in chemical industries.
- c) Prepare a chart or presentation of color coding for piping and cylinders.
- d) Prepare a presentation of different Personal Protective Equipments.
- e) Prepare a chart of your institute layout having a safety features like escape route, firefighting equipment, and first aid kit etc. location mark.
- f) Develop a demonstration or working model of firefighting equipment.
- g) Prepare a Presentation of various Hazard identification and Risk Assessment methods.
- h) Prepare a presentation or demonstration or working model of any Particulate matter control equipments or gaseous pollution control methods.
- i) Prepare a case study report on any air pollution incident.
- j) Prepare a presentation or demonstration or working model of any water pollution control methods or solid waste management.
- k) Prepare a case study report on any water pollution incident.

Sr. No.	TitleofBooks	Author	Publication with place, year and ISBN
1	Manual of Chemical	D.Venkateswarlu,	Chemical Engineering
	Technology, Chem	K.R.Upadrashta,	Education Development
	tech-l	K.D.	Centre, IIT, Madras, 1975
		Chandrasekaran	
2	Fundamentals of	Dr. K. U. Mistry	Siddharth Prakashan,
	Industrial Safety &		Ahmadabad
	Health		
3	Chemical Process	Daniel A. Crowl	3rd Edition, 2011, Prentice
	Safety:	Joseph F. Lowar	Hall, USA
	Fundamentals with		
	application		
4	Industrial Hygiene	M. H. Fulekar	I.K. International
	and chemical safety		
5	Industrial Safety	N. K. Tarafdar,	Dhanpatrai and Co.Ltd.,
	Management	K. J. Tarafdar	New-Delhi, 1st Edition, 2012

13. SUGGESTED LEARNING RESOURCES:

6	Industrial safety management	L. M. Deshmukh	Tata McGraw Hill, New Delhi, 2006
7	Industrial Safety, Health & Environment management	Sunil S. Rao, R.K. Jain	Khanna Publishers, New Delhi, 2006
8	Environmental Pollution control	C. S. Rao	New age international Pvt. Limited, 2nd edition
9	Pollution Control in Process Industries	S. P. Mahajan	Tata Mc GrawHill,
10	Text Book of Environmental Pollution and Control	Dr. Bhatia H. S.	Galgotia Publication,1st edition, New Delhi
11	Environmental Engineering	G. N. Pandey, Carney G. C.	Tata Mc GrawHill, New Delhi
12	Industrial Safety and Environment	Anupama Prashar Pratibha Bansal	S.K.Kataria & Sons

14. SUGGESTEDLEARNINGWEBSITES

- a) https://ndl.iitkgp.ac.in/
- b) https://www.vlab.co.in/
- c) https://nptel.ac.in/
- d) https://www.osha.gov/
- e) https://labour.gov.in/industrial-safety-health
- f) https://www.iso.org/popular-standards.html
- g) https://ndma.gov.in/
- h) https://www.csb.gov/videos/
- i) https://www.oisd.gov.in
- j) https://cpcb.nic.in/
- k) https://gpcb.gujarat.gov.in/
- I) https://www.accuweather.com/
- m) https://unfccc.int/

15. PO-COMPETENCY-CO MAPPING

Somostor IV	Safety and Pollution Control in Chemical Industry (4340504)								
Semester IV	POs								
Competency &Course Outcomes	PO1 Basic & Discipline- specific knowledge	PO2 Problem Analysis	PO3 Design/deve lopment of solutions	PO4 Engineering Tools, Experimenta tion & Testing	PO5 Engineering practices for society, sustainability & environment	PO6 Project Management	PO7 Life-long learning		

<u>Competency</u>	 Use principles of safety & pollution control to operate plant safely, and control pollution within permissible limits in chemical industries. 						
CO1: Understand basic concepts of Environment, Health & Safety.	2	-	-	1	2	1	-
CO2: Apply hazard control method in chemical industries.	2	2	2	2	2	1	2
CO3: Discuss hazard identification method & Risk assessment method.	2	1	1	2	2	1	2
CO4: Apply pollution control methods in chemical industries.	2	2	2	2	3	1	2

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email ID
1	Ms. Khushbu N Chaudhary Lecturer in Chemical Engg.	G. P. Gandhinagar		khushbu.ch306@gmail.com
2	Mr. Savan S Prajapati Lecturer in Chemical Engg.	G. P. Rajkot		svnprajapati@gmail.com