GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-IV

Course Title: Mass Transfer-I (Course Code: 4340502)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	4 th Semester

1. RATIONALE

The operations which involve changes in composition of solutions are known as the mass- transfer operations. Mass transfer operations are required for preliminary purification of raw materials or final separation of products from by-products. Mass transfer operations are major and important activity in most of the chemical plants. Hence the course has been designed to develop the following competency and its associated cognitive, practical and affective domainlearning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

• Use chemical process plant equipments for mass transfer operation safely

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- Students will be able to
- 1) Understand basics of Mass Transfer operation.
- 2) Use concept of diffusion in Fluids & Interphase mass transfer in separation techniques
- 3) Select mass transfer operations (Drying & extraction) equipment for various applications.
- 4) Compute material balance for mass transfer operations (Drying & extraction) in different condition.

Теа	ching Sc	heme	Total Credits	Examination Scheme					
	(In Hour	s)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Marks	Total Marks
L	Т	Р	С	ESE	ΡΑ	ESE	ΡΑ	200	
3	0	4	5	70	30	50	50	200	

4. TEACHING AND EXAMINATION SCHEME

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	1a. Describe Importance of mass	1.1 Introduction of Mass transfer
Unit – I	transfer operation	operations
	1b. Classify mass transfer	1.2 Classification of mass transfer
Fundamentals of	operations based on phases	operations
Mass Transfer	1c. Explain Membrane separation	1.3 Introduction , Basic Principle &
	operations	Various applications of Membrane
		Separation operation
	1d. Distinguish direct and indirect	1.4 Direct and indirect operations
	operations	
	1e. Describe selection of appropriate	1.5 Choice of separation method
	separation method	·
	1f. Methods of conducting the mass	1.6 Different methods of conducting
	transfer operations	mass transfer operation
	•	1) Solute recovery and fractionation
		2) Unsteady state operation
		Steady state operation
		Stage wise operation
		Continuous contact operation.
	2a. Differentiate Molecular and	2.1 Molecular andEddy diffusion
Unit – II	Eddy diffusion	
	2b. Explain & Calculate rate of	2.2 Rate of diffusionin Fluids
Molecular	diffusion in Fluids	
Diffusion in	2c. Distinguish Molar flux,	2.3 Molar flux, diffusivity and
Fluids	diffusivity and concentration	concentration gradient in Fluids
	gradient in Fluids	2.5 Fick's law & Derivation of diffusivity
	2d Define Fick's law & Derive	equation
	diffusivity equation	(D _{AB} =D _{BA})
	2e. Describe the effect of various	2.6 Effect of concentration,
	factors on diffusivity	Temperature and pressure on
		diffusivity
	2f. Explain molecular diffusion in	2.7 General equation for steady state
	fluids at rest & in laminar flow	molecular diffusion in fluids at
		rest & in laminar flow
	2g. Describe Molecular diffusion in	2.9 Molecular diffusion in gases
	gases	2.10 Derive Equation for Steady state
		diffusion of
	2h. Derive Equation for Steady	(a) Component A through non
	state diffusion	diffusing B and simple numerical
		(b) Equimolar counter current
	2i. Evaluate diffusivity of gases	diffusion of A and B with simple
	using empirical equation	numerical
		2.11 Empirical equation of
		diffusivity of Gases
	2j. Describe Molecular diffusion in	2.12 Molecular diffusion in liquids
	liquids	a) Steady state diffusion of A

	2k. Evaluate diffusivity of liquids using empirical equation	 through non diffusing B and simple numerical b) Steady state equimolal counter diffusion and simple numerical 2.13 Empirical equation of diffusivity of liquids
Unit – III Interphase Mass Transfer	 3a. Explain Equilibrium 3b. Describe Diffusion between phases 3c. Describe various mass transfer coefficients using resistance concept 	 3.1 Concept of equilibrium 3.2 Diffusion between phases (two resistance concept) 3.3 Local and overall two phases masstransfer co-efficient and their uses
	3e. Define stage, stage efficiency and cascade	3.5 Stage and stage efficiency and types of Cascade
Unit – IV Drying	 4a. Discuss drying equilibrium and related concepts 4a.1 Define Moisture content, Equilibrium and free moisture, Bound and unbound moisture 4a.2 Calculate - Moisture content, Equilibrium and free moisture, Bound and unbound moisture from the given data 	 4.1 Drying equilibrium 4.1.1 Insoluble solids 4.1.2 Hysteresis 4.1.3 Soluble solids 4.1.4 Definitions and calculation of Moisture content, Equilibrium and free moisture, Bound and unbound moisture
	4b. Classify Drying & Drying equipments	4.2 Batch and continuous drying 4.3 Classification of drying equipment
	4c. Describe construction and working of Drying equipments	 4.4 Construction and working of following Drying equipments 4.4.1 Tray drier 4.4.2 Vacuum drier 4.4.3 Rotary drier 4.4.4 Spray drier
	 4d. Describe drying rate characteristics for batch drying with sketches 4d.1 Derive equation for drying time for constant rate period and falling rate period 	4.5 Drying rate curve for batch drying4.6 Derivation of equation for dryingtime for constantrate period and fallingrate period
	4e. Calculate Drying time	4.7 Calculation of Drying time
Unit – V Liquid liquid	5a. Apply the liquid extraction	5.1 Industrial application of Liquid Extraction
Extraction	 5b. Describe the three component system 5c. Explain equilibrium using triangular co-ordinates 5d. Describe the effect of temperature and pressure 	 5.2 Equilibrium for three component system 5.3 Equilateral triangular co-ordinates system 5.3.1 System of three liquids-one pair partially Soluble 5.3.2 System of three liquids-two pair partially Soluble 5.4 Effect of the parameters and

		pressure on solubility		
	5e. Select appropriate solvent	5.5 Criteria for choice of solvent		
	5f. Distinguish various types of	5.6 Single stage extraction and		
	extraction	multistage cross current		
	5g. Describe the materialbalance for	extraction on ternary diagram		
	various stages	5.7 Material balance for single		
	5h. Calculate Material	stage, multistage- cross		
	balance in differentconditions	current		
		5.8 Problems based on material		
		balance		
	5i. Define Various equipment use in	5.9 Equipment Single stage extractor,		
	liquid extraction	agitated vessel, flow mixer and		
		settler, spray tower, packed tower		
		and centrifugal extractor		
Unit – VI	6a. Describe Industrial applications	6.1. Industrial applications of leaching		
Leaching	6b. Prepare solids	6.2. Preparation of solid		
Leading	Explain the factors affecting	6.3. Temperature of leaching		
	leaching			
	6c. Describe different states of	6.4. Methods of operation and		
	operation and equipments	equipment for		
		6.4.1 Unsteady state operation		
		1. In place operation		
		2. Heap leaching		
		3. Percolation tanks		
		4. Filter press leaching		
		5. Agitated vessel		
		6. Leaching by Shanks system		
		6.4.2 Steady state operation		
		1. Leaching during grinding		
		2. Leaching in door type agitator		
		3. Leaching in door balanced tray		
		thickener		
		4. Continues counter current		
		decantation with flow sheet		
		5. Leaching of vegetable seeds		
		I. Rotacell		
		II. Kennedy extractor		
		III. Continuous horizontal		
		extractor		
	6d. Explain Material	6.5. Material balance for single stage &		
	balance	Multistage cross current system		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			ks
		Hours	R Level	U Level	A Level	Total Marks
I	Fundamental of Mass Transfer	06	02	05	00	07

GTU - COGC-2021 Curriculum

II	Molecular Diffusion in Fluids	08	02	07	06	15
III	Interphase Mass Transfer	03	02	02	02	06
IV	Drying	08	02	06	05	15
V	Liquid liquid Extraction	10	02	08	05	15
VI	Leaching	07	03	07	02	12
Tot	al	42	13	37	20	70

Legends: R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as only as a guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills **(outcomes in psychomotor and affective domain)** so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	Practical/Exercise (Outcomes in Psychomotor Domain)	Approx.Hrs. Required
1	I	Describe different methods for conducting mass transfer operation (study experiment)	4
2	II	Determine diffusivity of gas-liquid system at room temperature	4
3	II	Determine diffusivity of gas-liquid system showing its dependency on temperature	4
4	II	Determine diffusivity of liquid-liquid system at room temperature	4
5	II	Determine diffusivity of liquid-liquid system showing its dependency on temperature	4
6	IV	Prepare drying curve of moist sand and moist limestone	4
7	IV	Find out equilibrium moisture content and drying time of wet solid	4
8	IV	To determine the drying characteristic for rotary dryer.	4

9	V	Determine the efficiency of single stage extraction	4
10	V	Determine the efficiency of two stage cross current extraction	4
11	V	Determine the distribution coefficient for toluene- acetic acid & chloroform -acetic acid mixture	4
12	V	Prepare ternary diagram for a system of three liquids	4
13	V	Obtain tie-line data for Acetic Acid, Benzene and water	4
14	VI	Measure recovery of salt using sand-salt mixture in single stage leaching	4
15	VI	Measure recovery of salt using sand-salt mixture in two stage leaching	4
16	VI	Describe different methods for steady state leaching operations. (study experiment)	4
Total Hrs	5		64

<u>Note</u>

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some **sample** 'Process' and '#Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr.No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Handling of apparatus for precise measurements	10
2	Record observations correctly	20
3	Practice and adapt good and safe measuring techniques	10
4	Calculations, Interpretation of results and their conclusion.	20
5	Prepare report of practical in prescribed format	10
6	Solve assignment questions.	20
7	Viva-voce	10
	Total	100

8. List of Major Equipment/ Instrument with Broad Specifications

Sr.No.	Equipment & glassware Name with Broad Specifications	Practical No.
1	Gaseous diffusion system: Thermostatic bath 2 litre; Temperature controller 0-100 ⁰ C; Vernier 0-100 mm (0.1 mm resolution); Magnetic stirrer with heater 2 MLH; Air blower 0.25HP	2,3
2	Liquid diffusion system: 1 liter glass beaker, Magnetic stirrer 1 MLH, electrical conductivity sensor & meter to measure conductivity in MHO	4,5
3	Tray dryer: Temp range 50-100/200, thick MS chamber, digital temp indicator and controller, Air circulation by induction motor, Tray about 80×40×3	6 to 8

4	Extractor: Glass column ID 75mm, OD 87mm, Height 1000mm; Supply tanks(three)-SS 304, 40 litre; Rota meters(two)-0.3 to 3 lpm- Glass tube, SS316 float; 0.25 HP motor with SS 304/316 shaft and blades	9 to 13
5	Leaching apparatus: Leaching bag-Polypropylene; Glass column Dia. 40 mm, height 400mm with SS 304 cap at both end; Solvent tank SS304-25 litre with 1 KW immersion heater; Collection tank SS 304, 30 litre; Pump- MOC-Polypropylene, 15 lpmflow rate	14 & 15
6	Glassware Separating funnels with stand-250ml, 500ml; Burettes-25 ml, 50 ml; Pipettes - 10 ml, 25 ml; conicalflasks- 250 ml, 500 ml; Beakers - 250 ml, 500 ml, measuring cylinder -25ml,50ml,100ml , specific gravity bottle	2 to 15

9. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices
- c) Observe safety measures
- d) Good house keeping
- e) Time management
- f) Practice environmentally friendly methods and processes.

The ADOs are best developed through laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

10. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities Other than the classroom and laboratory learning such as:

- i. Visit nearby industries and observe the working of mass transfer equipments and collect their specifications
- ii. Visit the website of reputed mass transfer equipment manufacturers and prepare a report on these equipments.
- iii. Attend NPTEL / MOOCS / SWAYAM platform for self learning.
- iv. Refer books available in department or Central library and prepare abstract of it.

GTU - COGC-2021 Curriculum

11. SPECIAL INSTRUCTIONAL STRATERGY (if any)

i. Show animated videos and drawings of mass transfer equipment

12. SUGGESTED MICRO-PROJECTS

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission.

Suggestive lists of micro-projects are given here. Similar micro-projects could be added by the concerned faculty:

- a) Prepare report: Prepare report of local industries where mass transfer operations are carried out.
- b) Prepare model: Demonstrate liquid liquid diffusion, Prepare working model / prototype model of equipments like rotary dryer / spray dryer / extractor etc.
- c) Prepare charts: Prepare charts of different mass transfer operations and phases involved in it.
- d) Prepare List: Prepare the list of different mass transfer operations and equipments.

13. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr.	Title of Books	Author	Publication
NO.			
1	Mass Transfer Operations	Robert E. Treybal	Mc Graw- Hill, 3 rd Edition, 1981
2	Unit Operation of Chemical	McCabe, Warren L.,	McGraw Hill Publication, New
	Engineering	Julian C. Smith	York 2004, 7 th Edition
3	Separation Process Principles	Ernest J. Henley, J. D.	Wiley India, 2 nd Edition, 2005
		Seader, D. Keith Roper	
4	Unit Operations-II	K. A. Gavhane	Nirali Prakashan, Pune, 2009
5	Unit Operations of Chemical	P. Chattopadhyay	Khanna Publishers, New Delhi,
	Engineering, Volume-1		1995
6	Chemical Engineering,	Coulsion and Richardson	Butterworth-Heinemann;
	Volume-2		5 th Edition, 2002
7	Introduction to Chemical	L.Badger,	McGraw Hill Publication, New
	Engineering	Julius T. Banchero	York, 7 th Edition, 2004

B. List of Software/Learning Websites

- i. www.unitoperation.com
- ii. www.nptel.com

14. PO-COMPETENCY-CO MAPPING

GTU - COGC-2021 Curriculum

Somester IV	MASS TRANSFER OPERATION-I (4340502)							
Semester iv	POs							
Competency & Course Outcomes	PO 1 Basic & Discipline- specific knowledge	PO 2 Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimen- tation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning	
<u>Competency</u>	Use chemical process plant equipments for mass transfer operation safely							
CO1. Understand basics of Mass Transfer operation.	3	1	-	-	-	-	1	
CO2. Use concept of diffusion in Fluids & Interphase mass transfer in separation techniques	3	2	2	3	1	-	2	
CO3. Select mass transfer operations (Drying & extraction) equipment for various applications.	3	2	2	2	1	-	2	
CO4. Compute material balance for mass transfer operations (Drying & extraction) in different condition.	1	2	2	2	1	-	2	

15. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Sr. No.	Name and Designation	Institute	Contact No.	Email ID
1	Mr. J. D. Dattani Lecturer in Chemical Engg.	G. P. Rajkot		jddattani@hotmail.com
2	Ms. M. H. Vadera Lecturer in Chemical Engg.	G. P. Gandhinagar	76003 21536	mvadera22@gmail.com